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Abstraet-In this paper a finite element formulation based on approximation in the Laplace transform space,
is given for Biot's Consolidation theory. Various integration schemes are proposed and conditions under
which these integration schemes are stable are investigated. The results are illustrated by means of a
numerical example.

INTRODUCTION
The theory of one dimensional consolidation was developed by Terzaghi[l]. Biot[2,3] later
extended the theory to three dimensional situations and subsequently [4, 5] modified his analysis
to include the effects of anisotropy and visco-elasticity.

Biot's consolidation equations are quite complicated in that they combine the complexities of
an elastic problem coupled with those of a diffusion process. For this reason it has been possible
to devise analytic solutions to only the simplest problems[I6, 17,20] and for more complicated
problems it has been necessary to devise numerical techniques.

Recently several investigators[6-13] have developed finite element formulations for the
consolidation process, a convenient account is given by Sandhu [7]. The finite element equations
are then solved by a marching technique. As is well known such marching techniques may well I,e
unstable [l4], however previous investigations seem incomplete in that they contain no
investigation of the stability/instability of the proposed integration scheme. This considerably
reduces the value of these formulations, for the stability of a proposed calculation can only be
ascertained by numerical experiment for that particular problem and so in an extended
calculation, the lack of criterion of convergence, makes it uncertain whether it is valid to increase
the integration step size during the calculation.

BASIC EQUATIONS

Biot's equations may be derived from the following considerations: (a) The stresses are in
equilibrium. (b) The effective srresses are related to the strains through a generalized Hooke's
Law. (c) The flow of water through the soil is governed by Darcy's Law.! (4) The water is
incompressible compared with the soil skeleton and thus the rate at which water flows out of an
element equals the rate of volume change of that element.
This leads to the following equations

k;j ap
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(Ia)

(Ib)

(lc)

(Id)

Utj are the components of the stress tensor (increase in total stress due to the applied
tractions) tensile stresses are taken as positive.

XI is the position vector.
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t denotes the time.
p is the excess pore pressure.
u, are the components of the displacement vector.

IT;I are the components of the effective stress tensor.
Ell are the components of the strain tensor.

H,lk, are the elastic coefficients in the generalized Hooke's Law H,lk, = 1iJlki = HkUI'
kll are the coefficients of permeability in the generalized Darcy's law kll = kll.
v, are the components of the superficial velocity vector of the pore water.
(} is the volume strain.
For definiteness the problem shown schematically in Fig. 1 will be' considered. The soil

Fig. I.
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occupies a volume V; the portion of the surface ST is acted upon by applied tractions which may
be assumed to have been applied instantaneously at t = 0+, the remainder of the surface SD is
subjected to fixed zero displacements. The portion of the surface Sp is assumed free to drain
while the remainder SI is impermeable. t

Thus for this problem equation (1) must be solved subject to the boundary conditions:

IT/lnl =Ti on ST (2a)

u/=O on SD (2b)

p=O on Sp (2c)

niVi= 0 on S1 (2d)

where nl denotes the outward normal to the surface of the body.
The pore water is assumed incompressible, it therefore follows that, initially when the load is

applied, there can be no instantaneous volume change and thus:

(J = 0 when t = 0+ (3)

It can be shown, by a slight extension of the method developed in [15], that the solution (Ui, p)
of equations (1-3) is the one which satisfies the conditions (2b, c) and minimizes the functional:

where a bar denotes the Laplace transform

(4)

f
ro

- -sf
U, = 0 Ui e dt etc.

tMore complicated boundary conditions, both elastic and hydraulic, are easily incorporated into the theory. The
extensions are straightforward and will not be given here.
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The minimization problem described by equation (4) may be solved approximately by the finite
element technique. In doing this it is convenient to introduce the more standard notation:
u T = (0'11, 0'22, 0'33, 0'23, 0'310 0'12) is the vector of stress components; E T = (Ell, E22' En, 2E23' 2E31'

2E12) is the vector of strain components; Dis the matrix of elastic constants, so that equation (lb)
becomes u' =DE; k is the matrix of permeabiIities; so that equation (1c) becomes v =kVp.

In this notation equation (4) becomes

(5)

The approximate solution of equation (5) by finite element techniques is straight forward.
(1) Suppose that 0, p can be adequately represented by their values at the nodes 1,2,3 ...

6 T= (U,T; u/ )
qT = (P1,P2 )

(2) Suppose that the continuous values of 0, p may be approximhted in terms of the nodal
values.t

0= C(x)6
p=aT(x)q

(3) Express the approximations to strains, volume strain and pore pressure gradients in terms
6,q

E= B(x)6
8= dT (x)6

Vp= E(x)6

where

a/ax,; 0; 0
0; a/aX2; 0

B= 0; 0; a/aX3 C
0; a/aX3; a/aX2

a/aX3; 0; a/ax,
a/aX2; a/ax,; 0

dT = (t, 1, 1,0,0, O)B

(4) eJ> lllay nQW be approximated in the form

where K= Iv BTDB dV = Elastic Stiffness Matrix

L= Iv ad
T

dV

tC(x), a(x) are both known, their precise form will depend upon the particular finite element adopted.

(6a)

(6b)
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(6c)

(6d)

Minimization of <l>approx. leads to the set of equations

K8 -Cq = j)

- 1
-LS --Mq=O

s

Equation (7a, b) may now be inverted, and thus

KS -LTq=b

LS-Mf qdt =0

It is often convenient to write equation (8b) in the alternative form

LdS
--Mq=O
dt

in this case it is necessary to append the condition

LS = 0 when t == 0+

(7a)

(7b)

(8a)

(8b)

(8c)

(8d)

which is of course the finite element equivalent of equation (3).
It is perhaps worthwile at this stage to note that the initial/final solutions can be obtained by

performing an elastic analysis and using the undrained/drained elastic constants and initial/final
loads, respectively. A proof of this for this isotropic case is given in [19]: the extension to the
anisotropic case provides no difficulty. These initial and final solutions provide useful
independent checks upon the accuracy of approximate solutions.

THE EXACT SOLUTION OF THE FINITE ELEMENT EQUATIONS
It will be useful, in obtaining the stability criterion for approximate solutions, to find an exact

solution of the finite element equations (7,8). This solution is the finite element analogue of
previous analytic results [15].

Equations (7) may be reduced to a more conventional form, by using equation (7a) to express
8 in terms of q as follows

(9a)

where 8. = K-1j) is the Laplace transform of the deflection vector due to the applied loads if no
excess pore pressures were to develop, i.e. the soil were infinitely permeable or completely dry.
Notice if the applied loads are independent of time 8. wiD also be the LaplacetraMform ofthe final
deflections.

When equation (9a) is substituted into equation (7b) it is found that

(M+ sP)q == sf (9b)

where
P=LK-1LT (9c)

and
f = -L8. (9d)
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Equation (9b) is of the classical eigenvalue form and thus, as is well known, the solution may be
written:

N
_ ~ S _ Q
q= ~ --a" n

n-I S - Sn

N

6 = 61$ +~ -s-anAn
ft-I S - Sn

where

an = QnTf/(QnTPQn)

An =K-1LTQn

and where S = Sn, n = 1, ... N are the eigenvalues of equation 9b)

det (M + Sn P) =0 n = 1, ... N

and Qn are the corresponding eigenvectors.

(M +SnP)Qn = 0

(lOa)

(lOb)

(lOc)

(lOd)

(l0e)

It is not desirable in numerical calculations to form the inverse of K, this may be overcome by
writing equation (7) in the form

Z(s)f =c

where

[
K L

T

]Z(s) = 1;
-L--M

S

and

c= [~J

The eigenvalues Sn are then the zeros of

det (Z(s» = 0

and equations (lOa, b) may be written:

_ _ N S _

r=r. +~ --anRn
n-I S - Sn

where

and

are the solutions of

Z(Sn)Rn = o.

(lla)

(lIb)

(lIc)

In terms of these eigenvalues the coefficients an are best calculated from the expression:
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Equation (IIa) may now be inverted to give

and

As would be expected from physical reasoning the eigenvalues Sn are all negative. This
follows since Sn may be written in the form:

Sn = - (QnTMQn )!(QnTPQn)

and both M, P are positive definite, equations (6a, c; 9c).
It is often useful to know the values of field quantities at small and large times, these may be

obtained by physical reasoning as indicated in the previous section or by means of the Tauberian
theorems for Laplace transforms [18]. Briefly these theorems state that if x(t) has the Laplace
transform i(s) then:

limit x(t) = limit si(s)
t_O+

limit x(t) = limit si(s)
t_oc 5-0

provided these limits exist.
Applying these results to equation (7a, b) it may be seen that the initial solution, denoted by

a subscript I, satisfies the equations:

K8I _LT
qI= bI

-L8I =0

Similarly if the final solution is indicated by a subcript F, then

(12)

(13)

It is easily shown that Eq. (12, 13) are precisely those which would be used in an undrained,
drained elastic analysis, as indicated in the previous section.

APPROXIMATE SOLUTION OF THE FINITE ELEMENT EQUATIONS

The method developed in the previous section is quite attractive for solutions at large or
moderate times, however for earlier times it is more convenient to use conventional 'marching'
techniques. These techniques have the advantage of l'!~;ng applicable in situations where the
eigenvalue technique is inapplicable, i.e. in problems involving moving boundaries, that is in
problems in which there is addition or removal of elements.

An approximate solution of equation (8), can be found by integrating equation (8c) from t to
t + Ii.t, or what is equivalent by subtracting equation (8b) evaluated at t, from its value at t + fit,
and making the following approximation:

J.
'+4'

, q(t') dt' ~ Ii.t(aq(t) +(1- a)q(t + Ii.t». (14)
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In equation (14) a particular value of a will correspond to a particular integration rule, e.g. a = ~

corresponds to trapezoidal integration.
Equations (8) now become

where

K8(t +at)- LTq(t +at) = bet +at)

- L8(t +at) - (1- a )atMq(t +at) = e[8(t), q(t)]

e[8(t), q(t)] = - L8(t) + a MMq(t).

(I5)

Clearly equation (15) can be used to obtain the value of 8, q at t +M from their own values at t;
and thus the values of 8, q may be found at all times by marching forward.

More formally, suppose it is desired to evaluate the solution at tiDies t = 0, at, 2at. ... Suppose
that the value of a given quantity at time t = iat is designated by the subscript i, then;

K c «(1- a )M)rl+1 =fHI i =0, ...; m.

where

Kc«l-a)at)=[~L', _L
T ]-z( I )

-(l-a)atM - (I-a)at

is the "consolidation stiffness matrix".

and f l + 1 denotes the "loadset"

f - [ bl
+

1
]1+1-

-L8, +aatMql .

(16)

The initial solution may be found by solving equation (12) or what is equivalent by solving

where
f/ = (bI,O). (17)

Notice that Kc is constant and depends only on the assumed constant value of (1- a lat. This
observation may be used to conserve computing time, for successive vectors fHI may be treated as
different load sets on some prescribed "structure". Thus, if equation (16) is solved by
Crout-Cholesky factorization, then the matrix Kc need only be factored once.

In practice it is usually desirable to change the step size during the calculation in such cases
Kc«l- a)at) will alter (except when a = 1) and so a new factorization must be performed.

Superficially it would seem that there is some merit in choosing a = I, as this matrix will
presumably have been factored in obtaining the initial solution and Kc will remain fixed no matter
what step size is adopted, and so no new factorization would be required. It be shown in the
following section that such a process is unstable and so the choice of a = I is not as attractive as
it would first seem.

STABILITY OF THE INTEGRATION SCHEME

As indicated in the introduction a numerical integration scheme involving forward marching
will only be of value provided that it is unconditionally stable or the conditions for stability are
known in advance.

The stability of the recurrence relation (16) will depend upon its homogeneous form:
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K8,+1 - LT q'+1 = 0

- L{81+ 1- 8,}- M{(l- a)qi+1 +aq,}at = O.

(l8a)

(l8b)

Equation (l8a) may be used to eliminate both 81+1> 8, from equation (I8b) and so on

P{q'+I-q.}-M{(I - a)q.+I- aql}at =O.

Now if q, is expanded in terms of the eigenvectors Q.., so that

then it is found that the coefficients a'j satisfy the simple recurrence relation

(I8c)

Now recalling that the eigenvalues SI are all negative and writing SI = -/3/, this equation becomes

a'+I,i _ 1- a/3/at
a;:; - 1+ (1 - a )/3{at'

It therefore follows that the proposed integration scheme is stable provided:

I 1- a/3/M I 1
l+(l-a)/3?M s

j = 1, .. , N.

On analyzing this inequality it may be seen that if a >! then the process is stable provided:

at smin{1//3/(a -!)}
j

or

While if as! the process is unconditionally stable,
In order to apply the stability criterion when a >! it is necessary to calculate the eigenvalue

of greatest magnitude SN = -/3N2
, Although this may be done by standard techniques, it is usually

more convenient to circumvent this calculation and choose a <!.
Some investigators[l2, 13] have found it convenient to increase the step size at throughout

the solution process. Thus if

equation (l8c) becomes

and in this case

so that
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It now becomes evident that, if {.dtl} is a strictly increasing sequence, the numerical solution will
always be unstable whenever a > ~ and will be unconditionally stable if a :5 t

NUMERICAL EXAMPLE

The following example, shown schematically in Fig. 2a, will be used to illustrate the
conclusions of the previous section.

In Fig. 2a, an isotropic consolidating material is compressed, under conditions of plane strain,
by a constant load P, between smooth rigid impermeable plates AA', BB'. The boundaries AB,
A'B' are stress free and free to drain.

s'

FIG (20)

y

A

Smooth rigid
plot<2s

s

A

I:=::=========!======::T---- X

s'

FIG. (2b)

In obtaining a numerical solution to this problem the arrangement of elements shown in Fig.
2b (triangles with linear variation of displacement and excess pore pressure) was used.

For definiteness attention was restricted to the following values of physical and geometric
parameters:

a=half the width of the impermeable plates =2 units
E= Young's modulus = 1 unit.
11= Poisson's ratio = 0·25.

k/'Y.. =Coefficient of permeability =1 unit/unit weight of water

For these values it was found that the greatest eigenvalue was:

and thus that:

(i) a :5 ~ process is always stable
(ii) a >! process is stable provided

.dt :5 0·614 x 10--4/(a - 0,5). (19)

The effect of variation of a with a constant time step is shown in Fig. 3. In this figure the
central pore pressure is plotted against dimensionless time Tv (Tv = 1/3 (E/l + v)
(1- 11)/(1- 211)kt/a 2

) for a series of values of a, when .dt = 2·04 X 10-4
• Equation (19) indicates

that the calculation is stable for a :5 0·8. This conclusion is borne out by Fig. 3, it can be seen that
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when a > 0·8 the numerical solution is unstable while for a :5 0·8 the solution is in good
agreement with the analytic solution [20].

The effect of variation with time step is illustrated in Fig. 4 for the particular case of a = 0·8.
Inequality (15) predicts that the calculation will be stable provided

and again this is borne out by the numerical results.
Finally the effect of varying the step size for a case which is always stable (a = 0,2) is shown

in Fig. 5. The numerical results are in quite good agreement with the analytic solution[20] even
for quite large time steps.
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